Debido a la falta de donativos ha
sido necesario incorporar publicidad a nuestro sitio para mantenerlo
en línea. Lamentamos esta situación y agradecemos su comprensión.
Somos el museo virtual más grande y mejor en
español.
Internet ha supuesto una revolución sin precedentes en el mundo de la informática y
de las comunicaciones. Los inventos del telégrafo, teléfono, radio y
computadora sentaron
las bases para esta integración. Internet es a la vez
una oportunidad de difusión mundial, un mecanismo de propagación de la información y un
medio de colaboración e interacción entre los individuos y sus
computadoras independientemente de su localización geográfica.
Internet representa uno de los ejemplos más exitosos de los beneficios de la
inversión sostenida y del compromiso de investigación y desarrollo en infraestructuras
informáticas. A raíz de la primitiva investigación en conmutación de paquetes, el
gobierno, la industria y el mundo académico han sido copartícipes de la evolución y
desarrollo de esta nueva y excitante tecnología. Hoy en día, términos como
alguien@empresa.com y http://www.tecnotopia.com.mx fluyen fácilmente en el
lenguaje común de las personas.
Existe una evolución tecnológica que
comienza con la primitiva investigación en conmutación de paquetes, ARPANET y
tecnologías relacionadas en virtud de la cual la investigación actual continúa tratando
de expandir los horizontes de la infraestructura en dimensiones tales como escala,
rendimiento y funcionalidades de alto nivel. Hay aspectos de operación y gestión de una
infraestructura operacional global y compleja. Existen aspectos sociales, que tuvieron
como consecuencia el nacimiento de una amplia comunidad de internautas trabajando juntos
para crear y hacer evolucionar la tecnología. Y finalmente, el aspecto de
comercialización que desemboca en una transición enormemente efectiva desde los
resultados de la investigación hacia una infraestructura informática ampliamente
desarrollada y disponible.
Internet hoy en día es una infraestructura informática ampliamente extendida. Su
primer prototipo es a menudo denominado National Global or Galactic Information
Infrastructure (Infraestructura de Información Nacional Global o Galáctica). Su historia
es compleja y comprende muchos aspectos: tecnológico, organizacional y comunitario. Y su
influencia alcanza no solamente al campo técnico de las comunicaciones computacionales
sino también a toda la sociedad en la medida en que nos movemos hacia el incremento del
uso de las herramientas online para llevar a cabo el comercio electrónico, la
adquisición de información y la acción en comunidad.
Conceptos iniciales sobre Internetting
La ARPANET original evolucionó hacia Internet. Internet se basó en la idea de que
habría múltiples redes independientes, de diseño casi arbitrario, empezando por ARPANET
como la red pionera de conmutación de paquetes, pero que pronto incluiría redes de
paquetes por satélite, redes de paquetes por radio y otros tipos de red. Internet como
ahora la conocemos encierra una idea técnica clave, la de arquitectura abierta de trabajo
en red. Bajo este enfoque, la elección de cualquier tecnología de red individual no
respondería a una arquitectura específica de red sino que podría ser seleccionada
libremente por un proveedor e interactuar con las otras redes a través del metanivel de
la arquitectura de Internetworking (trabajo entre redes). Hasta ese momento, había un
sólo método para "federar" redes. Era el tradicional método de conmutación
de circuitos, por el cual las redes se interconectaban a nivel de circuito pasándose bits
individuales síncronamente a lo largo de una porción de circuito que unía un par de
sedes finales. Cabe recordar que Kleinrock había mostrado en 1961 que la conmutación de
paquetes era el método de conmutación más eficiente. Juntamente con la conmutación de
paquetes, las interconexiones de propósito especial entre redes constituían otra
posibilidad. Y aunque había otros métodos limitados de interconexión de redes
distintas, éstos requerían que una de ellas fuera usada como componente de la otra en
lugar de actuar simplemente como un extremo de la comunicación para ofrecer servicio
end-to-end (extremo a extremo).
En una red de arquitectura abierta, las redes individuales pueden ser diseñadas y
desarrolladas separadamente y cada una puede tener su propia y única interfaz, que puede
ofrecer a los usuarios y/u otros proveedores, incluyendo otros proveedores de Internet.
Cada red puede ser diseñada de acuerdo con su entorno específico y los requerimientos de
los usuarios de aquella red. No existen generalmente restricciones en los tipos de red que
pueden ser incorporadas ni tampoco en su ámbito geográfico, aunque ciertas
consideraciones pragmáticas determinan qué posibilidades tienen sentido. La idea de
arquitectura de red abierta fue introducida primeramente por Kahn un poco antes de su
llegada a la DARPA en 1972. Este trabajo fue originalmente parte de su programa de
paquetería por radio, pero más tarde se convirtió por derecho propio en un programa
separado. Entonces, el programa fue llamado Internetting. La clave para realizar el
trabajo del sistema de paquetería por radio fue un protocolo extremo a extremo seguro que
pudiera mantener la comunicación efectiva frente a los cortes e interferencias de radio y
que pudiera manejar las pérdidas intermitentes como las causadas por el paso a través de
un túnel o el bloqueo a nivel local. Kahn pensó primero en desarrollar un protocolo
local sólo para la red de paquetería por radio porque ello le hubiera evitado tratar con
la multitud de sistemas operativos distintos y continuar usando NCP.
Sin embargo, NCP no tenía capacidad para direccionar redes y máquinas más allá de
un destino IMP en ARPANET y de esta manera se requerían ciertos cambios en el NCP. La
premisa era que ARPANET no podía ser cambiado en este aspecto. El NCP se basaba en
ARPANET para proporcionar seguridad extremo a extremo. Si alguno de los paquetes se
perdía, el protocolo y presumiblemente cualquier aplicación soportada sufriría una
grave interrupción. En este modelo, el NCP no tenía control de errores en el
servidor porque
ARPANET había de ser la única red existente y era tan fiable que no requería ningún
control de errores en la parte de los servidors.
Así, Kahn decidió desarrollar una nueva versión del protocolo que pudiera satisfacer
las necesidades de un entorno de red de arquitectura abierta. El protocolo podría
eventualmente ser denominado "Transmisson-Control Protocol/Internet Protocol"
(TCP/IP, protocolo de control de transmisión /protocolo de Internet). Así como el NCP
tendía a actuar como un driver (manejador) de dispositivo, el nuevo protocolo sería más
bien un protocolo de comunicaciones.
Reglas clave
Cuatro fueron las reglas fundamentales en las primeras ideas de Kahn:
Cada red distinta debería mantenerse por sí misma y no deberían requerirse cambios
internos a ninguna de ellas para conectarse a Internet.
Las comunicaciones deberían ser establecidas en base a la filosofía del
"best-effort" (lo mejor posible). Si un paquete no llegara a su destino debería
ser en breve retransmitido desde el emisor.
Para interconectar redes se usarían cajas negras, las cuales más tarde serían
denominadas gateways (pasarelas) y enrutadores (enrutadores). Los gateways no deberían
almacenar información alguna sobre los flujos individuales de paquetes que circulasen a
través de ellos, manteniendo de esta manera su simplicidad y evitando la complicada
adaptación y recuperación a partir de las diversas modalidades de fallo.
No habría ningún control global a nivel de operaciones.
Otras cuestiones clave que debían ser resueltas eran:
Algoritmos para evitar la pérdida de paquetes en base a la invalidación de las
comunicaciones y la reiniciación de las mismas para la retransmisión exitosa desde el
emisor.
Provisión de pipelining ("tuberías") servidor a servidor de tal forma que se pudieran
enrutar múltiples paquetes desde el origen al destino a discreción de los
servidors
participantes, siempre que las redes intermedias lo permitieran.
Funciones de pasarela para permitir redirigir los paquetes adecuadamente. Esto incluía la
interpretación de las cabeceras IP para enrutado, manejo de interfaces y división de
paquetes en trozos más pequeños si fuera necesario.
La necesidad de controles (checksums) extremo a extremo, reensamblaje de paquetes a partir
de fragmentos, y detección de duplicados si los hubiere.
Necesidad de direccionamiento global.
Técnicas para el control del flujo servidor a servidor.
Interacción con varios sistemas operativos.
Implementación eficiente y rendimiento de la red, aunque en principio éstas eran
consideraciones secundarias.
Kahn empezó a trabajar en un conjunto de principios para sistemas operativos orientados a
comunicaciones mientras se encontraba en BBN y escribió algunas de sus primeras ideas en
un memorándum interno de BBN titulado "Communications Principles for Operating
Systems". En ese momento, se dió cuenta de que le sería necesario aprender los
detalles de implementación de cada sistema operativo para tener la posibilidad de incluir
nuevos protocolos de manera eficiente. Así, en la primavera de 1973, después de haber
empezado el trabajo de "Internetting", le pidió a Vinton Cerf (entonces en la
Universidad de Stanford) que trabajara con él en el diseño detallado del protocolo. Cerf
había estado íntimamente implicado en el diseño y desarrollo original del NCP y ya
tenía conocimientos sobre la construcción de interfaces con los sistemas operativos
existentes. De esta forma, valiéndose del enfoque arquitectural de Kahn en cuanto a
comunicaciones y de la experiencia en NCP de Cerf, se asociaron para abordar los detalles
de lo que acabaría siendo TCP/IP.
El trabajo en común fue altamente productivo y la primera versión escrita (7) bajo este
enfoque fue distribuida en una sesión especial del INWG (International Network Working
Group, Grupo de trabajo sobre redes internacionales) que había sido convocada con motivo
de una conferencia de la Universidad de Sussex en Septiembre de 1973. Cerf había sido
invitado a presidir el grupo y aprovechó la ocasión para celebrar una reunión de los
miembros del INWG, ampliamente representados en esta conferencia de Sussex.
Estas son las directrices básicas que surgieron de la colaboración entre Kahn y Cerf:
Las comunicaciones entre dos procesos consistirían lógicamente en un larga corriente
de bytes; ellos los llamaban "octetos". La posición de un octeto dentro de esta
corriente de datos sería usada para identificarlo.
El control del flujo se realizaría usando ventanas deslizantes y acks (N. del T.:
abreviatura de acknowledgement, acuse de recibo). El destinatario podría decidir cuando
enviar acuse de recibo y cada ack devuelto correspondería a todos los paquetes recibidos
hasta el momento.
Se dejó abierto el modo exacto en que emisor y destinatario acordarían los parámetros
sobre los tamaños de las ventanas a usar. Se usaron inicialmente valores por defecto.
Aunque en aquellos momentos Ethernet estaba en desarrollo en el PARC de Xerox, la
proliferación de LANs no había sido prevista entonces y mucho menos la de PCs y
estaciones de trabajo. El modelo original fue concebido como un conjunto, que se esperaba
reducido, de redes de ámbito nacional tipo ARPANET. De este modo, se usó una dirección
IP de 32 bits, de la cual los primeros 8 identificaban la red y los restantes 24
designaban el servidor dentro de dicha red. La decisión de que 256 redes sería suficiente
para el futuro previsible debió empezar a reconsiderarse en cuanto las LANs empezaron a
aparecer a finales de los setenta.
El documento original de Cerf y Kahn sobre Internet describía un protocolo, llamado TCP,
que se encargaba de proveer todos los servicios de transporte y reenvío en Internet. Kahn
pretendía que TCP diera soporte a un amplio rango de servicios de transporte, desde el
envío secuencial de datos, totalmente fiable (modelo de circuito virtual) hasta un
servicio de datagramas en el que la aplicación hiciera un uso directo del servicio de red
subyacente, lo que podría implicar pérdida ocasional, corrupción o reordenación de
paquetes.
Sin embargo, el esfuerzo inicial de implementación de TCP dio lugar a una versión que
sólo permitía circuitos virtuales. Este modelo funcionaba perfectamente en la
transferencia de ficheros y en las aplicaciones de login remoto, pero algunos de los
primeros trabajos sobre aplicaciones avanzadas de redes (en particular el empaquetamiento
de voz en los años 70) dejó bien claro que, en ciertos casos, el TCP no debía
encargarse de corregir las pérdidas de paquetes y que había que dejar a la aplicación
que se ocupara de ello. Esto llevó a la reorganización del TCP original en dos
protocolos: uno sencillo, IP, que se encargara tan sólo de dar una dirección a los
paquetes y de reenviarlos; y un TCP que se dedicara a una serie de funcionalidades como el
control del flujo y la recuperación de los paquetes perdidos. Para aquellas aplicaciones
que no precisan los servicios de TCP, se añadió un protocolo alternativo llamado UDP
(User Datagram Protocol, protocolo de datagramas de usuario) dedicado a dar un acceso
directo a los servicios básicos del IP.
Una de las motivaciones iniciales de ARPANET e Internet fue compartir recursos, por
ejemplo, permitiendo que usuarios de redes de paquetes sobre radio pudieran acceder a
sistemas de tiempo compartido conectados a ARPANET. Conectar las dos redes era mucho más
económico que duplicar estos carísimos ordenadores. Sin embargo, mientras la
transferencia de ficheros y el login remoto (Telnet) eran aplicaciones muy importantes, de
todas las de esta época probablemente sea el correo electrónico la que haya tenido un
impacto más significativo. El correo electrónicodio lugar a un nuevo modelo de
comunicación entre las personas y cambió la naturaleza de la colaboración. Su
influencia se manifestó en primer lugar en la construcción de la propia Internet (como
veremos más adelante), y posteriormente, en buena parte de la sociedad.
Se propusieron otras aplicaciones en los primeros tiempos de Internet, desde la
comunicación vocal basada en paquetes (precursora de la telefonía sobre Internet) o
varios modelos para compartir ficheros y discos, hasta los primeros
"programas-gusano" que mostraban el concepto de agente (y, por supuesto, de
virus). Un concepto clave en Internet es que no fue diseñada para una única aplicación
sino como una infraestructura general dentro de la que podrían concebirse nuevos
servicios, como con posterioridad demostró la aparición de la World Wide Web. Este fue
posible solamente debido a la orientación de propósito general que tenía el servicio
implementado mediante TCP e IP.
Ideas a prueba
DARPA formalizó tres contratos con Stanford (Cerf), BBN (Ray Tomlinson) y UCLA (Peter
Kirstein) para implementar TCP/IP (en el documento original de Cerf y Kahn se llamaba
simplemente TCP pero contenía ambos componentes). El equipo de Stanford, dirigido por
Cerf, produjo las especificaciones detalladas y al cabo de un año hubo tres
implementaciones independientes de TCP que podían interoperar.
Este fue el principio de un largo periodo de experimentación y desarrollo para
evolucionar y madurar el concepto y tecnología de Internet. Partiendo de las tres
primeras redes ARPANET, radio y satélite y de sus comunidades de investigación
iniciales, el entorno experimental creció hasta incorporar esencialmente cualquier forma
de red y una amplia comunidad de investigación y desarrollo [REK78]. Cada expansión
afrontó nuevos desafíos.
Las primeras implementaciones de TCP se hicieron para grandes sistemas en tiempo
compartido como Tenex y TOPS 20. Cuando aparecieron los ordenadores de sobremesa
(desktop), TCP era demasiado grande y complejo como para funcionar en ordenadores
personales. David Clark y su equipo de investigación del MIT empezaron a buscar la
implementación de TCP más sencilla y compacta posible. La desarrollaron, primero para el
Alto de Xerox (la primera estación de trabajo personal desarrollada en el PARC de Xerox),
y luego para el PC de IBM. Esta implementación operaba con otras de TCP, pero estaba
adaptada al conjunto de aplicaciones y a las prestaciones de un ordenador personal, y
demostraba que las estaciones de trabajo, al igual que los grandes sistemas, podían ser
parte de Internet.
En los años 80, el desarrollo de LAN, PC y estaciones de trabajo permitió que la
naciente Internet floreciera. La tecnología Ethernet, desarrollada por Bob Metcalfe en el
PARC de Xerox en 1973, es la dominante en Internet, y los PCs y las estaciones de trabajo
los modelos de ordenador dominantes. El cambio que supone pasar de una pocas redes con un
modesto número de servidors (el modelo original de ARPANET) a tener muchas redes dio lugar a
nuevos conceptos y a cambios en la tecnología. En primer lugar, hubo que definir tres
clases de redes (A, B y C) para acomodar todas las existentes. La clase A representa a las
redes grandes, a escala nacional (pocas redes con muchos ordenadores); la clase B
representa redes regionales; por último, la clase C representa redes de área local
(muchas redes con relativamente pocos ordenadores).
Como resultado del crecimiento de Internet, se produjo un cambio de gran importancia
para la red y su gestión. Para facilitar el uso de Internet por sus usuarios se asignaron
nombres a los servidors de forma que resultara innecesario recordar sus direcciones
numéricas. Originalmente había un número muy limitado de máquinas, por lo que bastaba
con una simple tabla con todos los ordenadores y sus direcciones asociadas.
El cambio hacia un gran número de redes gestionadas independientemente (por ejemplo,
las LAN) significó que no resultara ya fiable tener una pequeña tabla con todos los
servidors. Esto llevó a la invención del DNS (Domain Name System, sistema de nombres de
dominio) por Paul Mockapetris de USC/ISI. El DNS permitía un mecanismo escalable y
distribuido para resolver jerárquicamente los nombres de los servidors (por ejemplo,
www.acm.org o www.ati.es) en direcciones de Internet.
El incremento del tamaño de Internet resultó también un desafío para los
enrutadores.
Originalmente había un sencillo algoritmo de enrutamiento que estaba implementado
uniformemente en todos los enrutadores de Internet. A medida que el número de redes en
Internet se multiplicaba, el diseño inicial no era ya capaz de expandirse, por lo que fue
sustituido por un modelo jerárquico de enrutamiento con un protocolo IGP (Interior
Gateway Protocol, protocolo interno de pasarela) usado dentro de cada región de Internet
y un protocolo EGP (Exterior Gateway Protocol, protocolo externo de pasarela) usado para
mantener unidas las regiones. El diseño permitía que distintas regiones utilizaran IGP
distintos, por lo que los requisitos de coste, velocidad de configuración, robustez y
escalabilidad, podían ajustarse a cada situación. Los algoritmos de enrutamiento no eran
los únicos en poner en dificultades la capacidad de los enrutadores, también lo hacía el
tamaño de la tablas de direccionamiento. Se presentaron nuevas aproximaciones a la
agregación de direcciones (en particular CIDR, Classless Interdomain Routing,
enrutamiento entre dominios sin clase) para controlar el tamaño de las tablas de
enrutamiento.
A medida que evolucionaba Internet, la propagación de los cambios en el software,
especialmente el de los servidors, se fue convirtiendo en uno de sus mayores desafíos. DARPA
financió a la Universidad de California en Berkeley en una investigación sobre
modificaciones en el sistema operativo Unix, incorporando el TCP/IP desarrollado en BBN.
Aunque posteriormente Berkeley modificó esta implementación del BBN para que operara de
forma más eficiente con el sistema y el kernel de Unix, la incorporación de TCP/IP en el
sistema Unix BSD demostró ser un elemento crítico en la difusión de los protocolos
entre la comunidad investigadora. BSD empezó a ser utilizado en sus operaciones diarias
por buena parte de la comunidad investigadora en temas relacionados con informática.
Visto en perspectiva, la estrategia de incorporar los protocolos de Internet en un sistema
operativo utilizado por la comunidad investigadora fue uno de los elementos clave en la
exitosa y amplia aceptación de Internet.
Uno de los desafíos más interesantes fue la transición del protocolo para
servidors de
ARPANET desde NCP a TCP/IP el 1 de enero de 1983. Se trataba de una ocasión muy
importante que exigía que todos los servidors se convirtieran simultáneamente o que
permanecieran comunicados mediante mecanismos desarrollados para la ocasión. La
transición fue cuidadosamente planificada dentro de la comunidad con varios años de
antelación a la fecha, pero fue sorprendentemente sobre ruedas (a pesar de dar la lugar a
la distribución de insignias con la inscripción "Yo sobreviví a la transición a
TCP/IP").
TCP/IP había sido adoptado como un estándar por el ejército norteamericano tres
años antes, en 1980. Esto permitió al ejército empezar a compartir la tecnología DARPA
basada en Internet y llevó a la separación final entre las comunidades militares y no
militares. En 1983 ARPANET estaba siendo usada por un número significativo de
organizaciones operativas y de investigación y desarrollo en el área de la defensa. La
transición desde NCP a TCP/IP en ARPANET permitió la división en una MILNET para dar
soporte a requisitos operativos y una ARPANET para las necesidades de investigación.
Así, en 1985, Internet estaba firmemente establecida como una tecnología que ayudaba
a una amplia comunidad de investigadores y desarrolladores, y empezaba a ser empleada por
otros grupos en sus comunicaciones diarias entre ordenadores. El correo electrónico se
empleaba ampliamente entre varias comunidades, a menudo entre distintos sistemas. La
interconexión entre los diversos sistemas de correo demostraba la utilidad de las
comunicaciones electrónicas entre personas.
La transición hacia una infraestructura global
Al mismo tiempo que la tecnología Internet estaba siendo validada experimentalmente y
usada ampliamente entre un grupo de investigadores de informática se estaban
desarrollando otras redes y tecnologías. La utilidad de las redes de ordenadores
(especialmente el correo electrónico utilizado por los contratistas de DARPA y el
Departamento de Defensa en ARPANET) siguió siendo evidente para otras comunidades y
disciplinas de forma que a mediados de los años 70 las redes de ordenadores comenzaron a
difundirse allá donde se podía encontrar financiación para las mismas. El Departamento
norteamericano de Energía (DoE, Deparment of Energy) estableció MFENet para sus
investigadores que trabajaban sobre energía de fusión, mientras que los físicos de
altas energías fueron los encargados de construir HEPNet. Los físicos de la NASA
continuaron con SPAN y Rick Adrion, David Farber y Larry Landweber fundaron CSNET para la
comunidad informática académica y de la industria con la financiación inicial de la NFS
(National Science Foundation, Fundación Nacional de la Ciencia) de Estados Unidos. La
libre diseminación del sistema operativo Unix de ATT dio lugar a USENET, basada en los
protocolos de comunicación UUCP de Unix, y en 1981 Greydon Freeman e Ira Fuchs diseñaron
BITNET, que unía los ordenadores centrales del mundo académico siguiendo el paradigma de
correo electrónico como "postales". Con la excepción de BITNET y USENET, todas
las primeras redes (como ARPANET) se construyeron para un propósito determinado. Es
decir, estaban dedicadas (y restringidas) a comunidades cerradas de estudiosos; de ahí
las escasas presiones por hacer estas redes compatibles y, en consecuencia, el hecho de
que durante mucho tiempo no lo fueran. Además, estaban empezando a proponerse
tecnologías alternativas en el sector comercial, como XNS de Xerox, DECNet, y la SNA de
IBM (8). Sólo restaba que los programas ingleses JANET (1984) y norteamericano NSFNET
(1985) anunciaran explícitamente que su propósito era servir a toda la comunidad de la
enseñanza superior sin importar su disciplina. De hecho, una de las condiciones para que
una universidad norteamericana recibiera financiación de la NSF para conectarse a
Internet era que "la conexión estuviera disponible para todos los usuarios
cualificados del campus".
En 1985 Dennins Jenning acudió desde Irlanda para pasar un año en NFS dirigiendo el
programa NSFNET. Trabajó con el resto de la comunidad para ayudar a la NSF a tomar una
decisión crítica: si TCP/IP debería ser obligatorio en el programa NSFNET. Cuando Steve
Wolff llegó al programa NFSNET en 1986 reconoció la necesidad de una infraestructura de
red amplia que pudiera ser de ayuda a la comunidad investigadora y a la académica en
general, junto a la necesidad de desarrollar una estrategia para establecer esta
infraestructura sobre bases independientes de la financiación pública directa. Se
adoptaron varias políticas y estrategias para alcanzar estos fines.
La NSF optó también por mantener la infraestructura organizativa de Internet
existente (DARPA) dispuesta jerárquicamente bajo el IAB (Internet Activities Board,
Comité de Actividades de Internet). La declaración pública de esta decisión firmada
por todos sus autores (por los grupos de Arquitectura e Ingeniería de la IAB, y por el
NTAG de la NSF) apareció como la RFC 985 ("Requisitos para pasarelas de
Internet") que formalmente aseguraba la interoperatividad entre las partes de
Internet dependientes de DARPA y de NSF.
Junto a la selección de TCP/IP para el programa NSFNET, las agencias federales
norteamericanas idearon y pusieron en práctica otras decisiones que llevaron a la
Internet de hoy:
Las agencias federales compartían el coste de la infraestructura común, como los
circuitos transoceánicos. También mantenían la gestión de puntos de interconexión
para el tráfico entre agencias: los "Federal Internet Exchanges" (FIX-E y
FIX-W) que se desarrollaron con este propósito sirvieron de modelo para los puntos de
acceso a red y los sistemas *IX que son unas de las funcionalidades más destacadas de la
arquitectura de la Internet actual.
Para coordinar estas actividades se formó el FNC (Federal Networking Council, Consejo
Federal de Redes) (9). El FNC cooperaba también con otras organizaciones internacionales,
como RARE en Europa, a través del CCIRN (Coordinating Committee on Intercontinental
Research Networking, Comité de Coordinación Intercontinental de Investigación sobre
Redes) para coordinar el apoyo a Internet de la comunidad investigadora mundial.
Esta cooperación entre agencias en temas relacionados con Internet tiene una larga
historia. En 1981, un acuerdo sin precedentes entre Farber, actuando en nombre de CSNet y
NSF, y Kahn por DARPA, permitió que el tráfico de CSNet compartiera la infraestructura
de ARPANET de acuerdo según parámetros estadísticos.
En consecuencia, y de forma similar, la NSF promocionó sus redes regionales de NSFNet,
inicialmente académicas, para buscar clientes comerciales, expandiendo sus servicios y
explotando las economías de escala resultantes para reducir los costes de suscripción
para todos.
En el backbone NSFNet (el segmento que cruza los EE.UU.) NSF estableció una política
aceptable de uso (AUP, Acceptable Use Policy) que prohibía el uso del backbone para fines
"que no fueran de apoyo a la Investigación y la Educación". El predecible e
intencionado resultado de promocionar el tráfico comercial en la red a niveles locales y
regionales era estimular la aparición y/o crecimiento de grandes redes privadas y
competitivas como PSI, UUNET, ANS CO+RE, y, posteriormente, otras. Este proceso de aumento
de la financiación privada para el uso comercial se resolvió tras largas discusiones que
empezaron en 1988 con una serie de conferencias patrocinadas por NSF en la Kennedy School
of Government de la Universidad de Harvard, bajo el lema "La comercialización y
privatización de Internet", complementadas por la lista "com-priv" de la
propia red.
En 1988 un comité del National Research Council (Consejo Nacional de Investigación),
presidido por Kleinrock y entre cuyos miembros estaban Clark y Kahn, elaboró un informe
dirigido a la NSF y titulado "Towards a National Research Network". El informe
llamó la atención del entonces senador Al Gore (N. del T.: Vicepresidente de los EE.UU.
desde 1992) le introdujo en las redes de alta velocidad que pusieron los cimientos de la
futura «Autopista de la Información».
La política de privatización de la NSF culminó en Abril de 1995 con la eliminación de
la financiación del backbone NSFNET. Los fondos así recuperados fueron redistribuidos
competitivamente entre redes regionales para comprar conectividad de ámbito nacional a
Internet a las ahora numerosas redes privadas de larga distancia.
El backbone había hecho la transición desde una red construida con enrutadores de la
comunidad investigadora (los enrutadores Fuzzball de David Mills) a equipos comerciales. En su
vida de ocho años y medio, el backbone había crecido desde seis nodos con enlaces de
56Kb a 21 nodos con enlaces múltiples de 45Mb.Había visto crecer Internet hasta alcanzar
más de 50.000 redes en los cinco continentes y en el espacio exterior, con
aproximadamente 29.000 redes en los Estados Unidos.
El efecto del ecumenismo del programa NSFNET y su financiación (200 millones de dólares
entre 1986 y 1995) y de la calidad de los protocolos fue tal que en 1990, cuando la propia
ARPANET se disolvió, TCP/IP había sustituido o marginado a la mayor parte de los
restantes protocolos de grandes redes de ordenadores e IP estaba en camino de convertirse
en el servicio portador de la llamada Infraestructura Global de Información.
Notas
(1) Quizás esto constituya una exageración basada en la residencia en Silicon Valley del
autor principal del artículo.
(2) En una visita reciente a una librería de Tokio, uno de los autores contó hasta 14
revistas en inglés dedicadas a Internet.
(3) Una versión abreviada de este artículo aparece en la publicación del 50 aniversario
de Communications of the ACM (CACM), Febrero de 1997. Los autores quisieran expresar su
agradecimiento a Andy Rosenbloom, editor senior de CACM, por inducirnos a escribir el
presente artículo y por su inestimable asistencia para editar tanto éste como la citada
versión abreviada.
(4) La Advanced Research Projects Agency (ARPA, Agencia de Proyectos de Investigación
Avanzada) cambió su nombre a Defense Advanced Research Projects Agency (DARPA, Agencia de
Proyectos de Investigación Avanzada para la Defensa) en 1971, más tarde retomó su
antigua denominación ARPA en 1993, para volver a DARPA en 1996. Nosotros la llamaremos
siempre con su nombre actual (DARPA).
(5) Fue a partir del estudio de RAND como se inició el rumor de que ARPANET era algo
relacionado con la construcción de una red resistente a la guerra nuclear. En realidad,
esto nunca fue cierto. Solamente el estudio de RAND sobre seguridad vocal tomaba en
consideración la guerra nuclear. Sin embargo, el trabajo posterior en Internetting hizo
énfasis en la robustez y capacidad de supervivencia, incluyendo la capacidad de resistir
la pérdida de grandes porciones de las redes en uso.
(6) Incluyendo entre otros a Vinton Cerf, Steve Crocker y Jon Postel. Más tarde se
unieron a ellos David Crocker que jugó un importante papel en la documentación de los
protocolos de correo electrónico y Robert Braden que desarrolló el primer NCP y después
TCP para grandes ordenadores IBM y también jugó un papel a largo plazo en el ICCB y el
IAB.
(7) Esta fue más tarde publicada como: V.G. Cerf y R.E. Kahn, "A Protocol for Packet
Network Interconnection", IEEE Trans. Comm. Tech., vol. COM-22, V5, May 1974, pp.
627-641.
(8) El deseo de intercambiar correo electrónico llevó, sin embargo, a la aparición de
uno de los primeros libros sobre Internet: A Directory of Electronic Mail Addressing and
Networks de Frey y Adams, sobre traducción y envío de direcciones de correo.
(9) Denominado originalmente FRICC (Federal Research Internet Coordinating Committee,
Comité de Coordinación Federal de Investigación sobre Internet).
History of the Internet
The internet's history can be traced back to ARPANET - which was started by the US Dept.
of Defense for research into networking sometime in 1969.
Many people wanted to put their ideas into the standards for communication between the
computers that made up this network, so a system was devised for putting forward ideas.
Basically you wrote your ideas in a paper called a 'Request for Comments' (RFC for short),
and let everyone else read it. People commented on and improved your ideas in new RFCs.
The first RFC (RFC0001) was written on April 7th, 1969 - that this is probably the closest
thing to a 'start date' for the internet. There are now well over 2000 RFCs, describing
every aspect of how the internet functions.
ARPAnet was opened to non-military users later in the 1970s, and early takers were the big
universities - although at this stage it resembled nothing like the internet we know
today. International connections (i.e. outside America) started in 1972, but the internet
was still just a way for computers to talk to each other and for research into networking,
there was no World-Wide- Web and no email as we now know it.
It wasn't until the early to mid 1980s that the services we now use most on the internet
started appearing. The concept of 'domain names', things like 'microsoft.com', and special
`Domain Name Servers' wasn't even introduced until 1984 - before that all the computers
were just addressed by their IP addresses (numbers). Most protocols used for email and
other services appeared after this - although email itself had been around much longer the
way it was sent between institutions was less standardized.
The part of the internet most people are probably most familiar with is the
World-Wide-Web. This is a collection of hyperlinked pages of information distributed over
the internet via a network protocol called HTTP (hyper-text-transfer- protocol). This was
invented by Tim Berners-Lee in 1989. He was a physicist working at CERN, the European
Particle Physics Laboratory, and wanted a way for physicists to share information about
their research - the World-Wide-Web was his solution. So the web was started, although at
this time it was text-only. Graphics came later with a browser called NCSA Mosaic. Both
Microsoft's Internet Explorer and Netscape were originally based on NCSA Mosaic.
The graphical interface opened up the internet to novice users and in 1993 it's use
exploded as people were allowed to 'dial-in' to the internet using their computer at home
and a modem to ring up an 'Internet Service Provider' (ISP) to get their connection to
this (now huge) network. Before this the only computers connected were at Universities and
other large organisations that could afford to hire cables between each other to transfer
the data over - but now anyone could use the internet and it evolved into the 'Information
Superhighway' that we know and (possibly) love today.
Aceptamos saludos, felicitaciones, colaboraciones, aportaciones,
información, sugerencias, patrocinios, donaciones en capital o especie.
Museo de la Informática y Computación Aplicada, DR(C) Héctor
Francisco Rentería Toledo, 2003 - 2015 en trámite